Bất phương trình là một trong những dạng toán khó của chương trình đại số lớp 10 bởi tính đa dạng của nó. Nếu vẫn còn mơ hồ về kiến thức này, các em hãy tham khảo ngay những dạng bài tập và cách giải bài tập bất phương trình lớp 10 qua bài viết dưới đây từ Team Marathon Education.
Bất phương trình một ẩn là một mệnh đề (biểu thức) chứa biến x so sánh hai hàm số f(x) và g(x) trên trường số thực dưới một trong các dạng
\begin{aligned} &f(x) g(x), f(x) \le g(x),f(x)\ge g(x) \end{aligned}
Giao của hai tập xác định của các hàm số f(x) và g(x) được gọi là tập xác định của bất phương trình.
Bất phương trình ẩn x là mệnh đề chứa biến x có dạng f(x) > g(x), f(x) ≥ g(x).
Để có thể giải được dạng bài tập này, các em cần nắm vững một số nội dung quan trọng dưới đây.
Bảng xét dấu của nhị thức bậc nhất
Điều kiện của a và b sẽ ảnh hưởng đến kết quả của nghiệm cuối cùng thu được.
P(x).Q(x) > 0
Trong đó, cả P(x) và Q(x) đều là những nhị thức bậc nhất.
Phương pháp giải: Lập bảng xét dấu của của P(x).Q(x), từ đó suy ra tập nghiệm.
\frac{P(x)}{Q(x)}>0
Trong đó, P(x) và Q(x) là những nhị thức bậc nhất.
Phương pháp giải: Các em lập bảng xét dấu của của P(x)/Q(x), sau đó suy ra được tập nghiệm. Để đảm bảo tính chính xác của phép chia, các em không nên quy đồng và khử mẫu.
Giải bất phương trình chứa tham số (m+a)x + b > 0 là xem xét rằng với các giá trị nào của tham số thì bất phương trình vô nghiệm, có nghiệm và tìm ra các nghiệm đó.
Phương pháp giải: Tùy theo yêu cầu đề, lập bảng xét dấu, biện luận tìm tham số m phù hợp và tìm nghiệm (nếu có).
Nhận xét:
ax^2+bx+c>0, \ \forall x\in\R \Leftrightarrow \begin{cases}a>0\\\Delta
Bất phương trình bậc 2 có dạng a.x2 + b.x + c > 0 với a # 0
Đặt Δ = b2 − 4ac. Ta có các trường hợp sau:
Áp dụng định nghĩa và tính chất của giá trị tuyệt đối để khử dấu giá trị tuyệt đối:
|f(x)| 0 \\ -g(x)
|f(x)| > g(x) \Leftrightarrow \left[\begin{array}{l} \begin{cases} g(x) g(x)\\ \end{array}\right. \end{array}\right. \end{array}\right.
Để có thể khử căn và giải được dạng bài tập này, các em cần kết hợp phép nâng lũy thừa hoặc đặt ẩn phụ.
Bài tập 1: Giải bất phương trình -6x + 12
Hướng dẫn giải:
-6x + 12 2
Vậy tập nghiệm của bất phương trình là S={x | x > 2}
Bài tập 2: Giải bất phương trình sau
x+1 \ge \sqrt{2(x^2-1)}
Hướng dẫn giải:
\begin{aligned} &x+1 \ge \sqrt{2(x^2-1)}\\ \Leftrightarrow&\begin{cases}x+1\ge 0\\(x+1)^2 \ge 2(x^2-1)\\x^2-1\ge 0 \end{cases}\\ \Leftrightarrow&\begin{cases}x\ge -1\\x^2-2x-3\le0\\x^2\ge 1 \end{cases}\\ \Leftrightarrow&\begin{cases}x\ge -1\\-1\le x \le 3\\ \left[\begin{array}{c} x\le-1\\x\ge 1 \end{array} \right. \end{cases}\\ \Leftrightarrow&\left[\begin{array}{c} x=-1\\1\le x \le 3 \end{array} \right.\\ &\text{Vậy tập nghiệm của bất phương trình là } S=[1;3] ∪\{-1\} \end{aligned}
Bài tập 3: Giải bất phương trình sau
\begin{aligned} &(2x-1)(x+3)-3x+1\le(x-1)(x+3)+x^2-5\\ &Lời\space giải:\\ &\Leftrightarrow 2x^2+6x-x-3-3x+1\le x^2+3x-x-3+x^2-5\\ &\Leftrightarrow2x^2+2x-2\le 2x^2+2x-8\\ &\Leftrightarrow6\le 0 (vô\space lý)\\ &Vậy\space bất\space phương\space trình\space vô\space nghiệm \end{aligned}